Highs and Lows

Karl shares his insights on the conundrum of EGR. A riddle, wrapped inside an enigma, recirculating exhaust gas through the system

Published:  30 July, 2018

When faced with diagnosing a fault, in order for us to be able to test the system it is crucial we understand the system’s layout, components and function. We recently faced a fault in a system we had little experience on, so it was an ideal opportunity for a bit of studying.

Technical information is readily available from many sources, be it manufacturer or generic information, and does not take too long to find. While Google isn’t really a substitute for diagnostics, in situations like this it can be very useful for generic information. The fault on this vehicle turned out to be something so trivial I won’t bore you with it. What I would like to share is the valuable information I picked up along the way.

Main purpose
Exhaust gas recirculation (EGR) is nothing new, it’s been used on petrol and diesel engines for many years and while layout and control has varied in design the principle has remained the same. It is important to understand that manufacturers use different methods and configureuration, and for this article I’ve studied several and have tried to demonstrate a generic system.

The main purpose of EGR is to reduce the level of harmful Nitrogen Oxide (NOx) gases emitted from the vehicle’s exhaust. NOx is present in exhaust emissions due to high combustion temperatures and pressures. Under light load/cruising conditions the EGR system directs a proportion of the exhaust gas back into the engine’s air intake. This reduces the oxygen levels which in turn reduces combustion temperature resulting in a lower NOx emission. When power is required from the engine the EGR system closes to insure a more efficient combustion (see figure 1).

EGR on/off
This is the conventional system in its closed (off) position.  During operation exhaust gases are taken from the exhaust manifold (pre-turbo), passed through a cooler (10) up to the EGR Valve (6). The cooler is a heat exchanger that not only uses the engine coolant to cool the gases to increase the mass but utilises the heat to warm up the coolant faster which helps the interior heater warm-up faster. The EGR Valve (6) can be either electrical of vacuum operated. The  powertrain control module (PCM) commands the EGR valve to open by a specified amount dependent on engine conditions (see figure 2).

Some EGR valves have a position sensor that provides feedback to the PCM to ensure the correct position has been achieved. In a system where the EGR valve is not equipped with a position sensor, the PCM monitors the Mass Airflow signal in order to regulate EGR flow. This is achievable due to the fact that as the EGR valve is commanded open and gases start to flow, the air flowing in to the Mass Airflow Sensor will decrease. The calculation is made using tables of data (mapping) within the PCM’s software. Understanding this is crucial when diagnosing running faults as a fault in the Mass Airflow can easily affect the EGR system and vice versa.

Understanding and diagnosing airflow and EGR faults I find can be easier if you look at it pressure differential. If air is flowing through a tube with a restriction in it, the air pressure after the restriction will always be lower than the pressure before the restriction. The difference in pressure will vary depending on the mass or pressure of the air and the size of the restriction.

Air intake/throttle flap
The air intake/throttle flap (see figure 3) generally defaults to the fully open position while the EGR valve defaults to the closed position. The purpose of the flap is to reduce the pressure on the engine side. As the intake flap starts to restrict the airflow, the pressure decreases to a pressure lower than that of the EGR pressure and the EGR gases start to flow into the engine’s air intake. If the exhaust gas pressure was slightly lower than the air pressure entering the engine then the gases would flow in the wrong direction.
    When in good working order this system serves its purpose. However, due to the fact that there is particulate matter in the exhaust gases, the system and components will slowly become blocked, causing reduced flow and valves starting to jam or not seal correctly. The air intake system often contains oil residue from the engines breathing system and slight oil loss from the turbo itself. When this oil is mixed with the particulates in the EGR gases it makes a very sticky gunk that starts to block the inlet manifold and intake ports.

When the engine is under load and turbo boost pressure is required, the EGR valve needs to close and seal. If an EGR valve isn’t sealing correctly when closed then boost pressure will be lost into the exhaust system. The lower boost pressure and reduced oxygen level affects the combustion which in turn causes more particulate matter which only adds to the issue. If the EGR valve is stuck wide open then in most cases the engine will barely run.

High pressure system    
Euro 6 was introduced in September 2014 which demanded much tighter emissions than previous which required an advance in emission control technology. While the precise control of the fuel side of the engine management system has gained precision with higher fuel pressure and multiple injections within the cycle, the air intake, exhaust and emission control systems have too. Most manufactures use a high and a low pressure EGR system.  Prior to this most EGR systems were relatively simple and fell under the ‘High Pressure EGR’ title (see figure 4 and figure 5).

The high pressure system is similar in layout to previous systems but serves a slightly different purpose. The system is only used during the warm-up phase of the engine from cold start. There is a pre-turbo passage from the manifold directly to the high pressure EGR valve (6). As the system is only used in the warm-up phase there is no need for a cooler. In this particular system there is a distribution channel that directs the gases equally into each inlet port. The purpose of this system is to raise the intake air temperature in order to improve combustion and reduce the warm-up time for the catalytic convertor/NOx storage catalyst (7) allowing them to function sooner. Once at operating temperature the system is pretty much redundant.

Low pressure system
The low pressure system (is active under most engine operating conditions and its purpose replaces that of the older systems- to reduce NOx gases (see figure 6). A proportion of the exhaust gas is collected after the Diesel Particulate Filter (8) and passes through a Wire Mesh Filter (9), through the EGR Cooler (10), up to the Low Pressure EGR Valve (11). The EGR valve then controls the flow through a channel up to the intake side of the turbocharger. The wire mesh filter ensures there is no particulate matter entering the system and also in the event of the particulate filter substrate breaking up, it also protects the rest of the system including the turbocharger, air intake and engine internals from damage. The cooler reduces the gas temperature which in turn increases the mass allowing a higher volume of exhaust gas to be recirculated. Due to the exhaust pressure after the particulate filter being quite low and also the air intake pressure before the turbo charger also being low there is and Exhaust Flap (12) fitted. By closing this slightly the exhaust pressure increases which causes the gases to flow back towards the turbocharger.

Key benefits
These systems usually have between three and four  exhaust gas temperature sensors each placed at key points of the exhaust system and two pressure differential sensors. The first is measuring pressure before and after the particulate filter (to calculate soot loading) and second between the DPF outlet and the point after the EGR valve, before the turbo. Coupling these six signals with the Mass Airflow sensor, the positions of both EGR valves and the intake flap, the turbo variable-vane position and the intake pressure (MAP), using the mapping within the PCM’s software means it can also make all calculations necessary. This provides an extremely high intake pressure and exhaust after treatment control.

The key benefits of this system are that the exhaust gases are free of any particulate matter which keeps the entire system much cleaner and therefore reliable. The gases are also cooler meaning a greater mass can be used in a more effective way. Finally the gases re-enter the system before the turbocharger, allowing for the increase in boost pressures at lower engine load and RPM.

Does this make diagnosis harder than before? Not if you take the time to study the purpose of each component and how it works. I’ll openly admit it wasn’t that long ago that I would have taken one look at this system and sent it on its way! Nobody likes being beaten by a job but neither should we have to waste too many hours trying to guess what’s wrong with it, worse still start throwing parts at it. It took me half an hour to locate this info, an hour studying it and a further hour planning what tests I was going to conduct and what results I was expecting to see. What was wrong with it in the end? A faulty sensor confirmed with no more than a voltmeter! After replacing the sensor I wanted to confirm the repair and monitor the function of the components using serial data. Something I highly recommend doing is picking five lines of serial data on every car you work on that requires an extended road test and monitoring them to see how they behave and what effect driving style (engine load) has on them. I guarantee after 10 cars you’ll know what to expect and be far more confident in diagnosing related faults. It works for me!

Related Articles

  • Dirty work: Keeping diesel exhausts clean 

    The exhaust is a lot more than just an exit route for waste gases for some time now. Tim Howes, deputy general manager – supply chain and technical service, NGK Spark Plugs (UK) Ltd, provides some context: “In 2009, The Euro V emissions standard for passenger cars demanded a significant reduction in NOx, HC and particulate matter and in 2014 the Euro VI standard brought a further tightening of these emissions, primarily for diesel engines.”


    Complexity
    For diesel powered vehicles this has meant a significant increase in the complexity of exhaust gas recirculation (EGR) and after treatment resulting in the fitment of various combinations of diesel oxidising catalyst (DOC), selective catalytic reduction (SCR), lean NOx trap (LNT),  diesel particulate filter (DPF) and other associated devices and control systems.
    All these additional components have led to an increased need for sensors in the system.

  • Part two The good and THE GREAT  

    In part one, we looked at the start of the ‘diagnostic process.’ The first steps were customer questioning, confirming the fault and knowing the system and its function. These help the technician to build the ‘big picture’ necessary to repair the vehicle correctly.
    In this article we will look at the next four steps.

    Step 4: Gather evidence
    It is easy to overlook this step as many technicians think of it as the overall ‘diagnosis.’ However, once the technician understands the system, gathering evidence will provide key information. This step is normally best carried out with the use of test equipment that does not mean the dismantling of systems and components.

    Many technicians have their own favourite tools and equipment but this list can include (but not limited to)
    the following:
    Scan tool – It is always best practice to record the fault codes present, erase the codes, and then recheck. This means codes which reappear are still current. Remember that a fault code will only indicate a fault with a circuit or its function. It is not always the component listed in the fault code that is at fault

    Oscilloscope – An oscilloscope can be used for a multitude of testing/initial measuring without being intrusive. Some oscilloscope equipment suppliers are looking at systems within high voltages hybrid/electric vehicle technology. The waveforms produced by the test equipment can be used when analysing the evidence and may indicate that a fault exists within a system. An understanding of the system being tested will be necessary to understand the information. This may even include performing sums so all those missed maths lessons at school may come back to haunt you. It may take time to become confident analysing the waveforms, so be patient

    Temperature measuring equipment – This can include the use of thermal imaging cameras. Most systems that produce energy/work will also produce some heat. The temperatures produced vary from system to system. Examples include everything from engine misfires to electrical components, as well as air conditioning system components and mechanical components such as brake and hub assemblies. The possibilities are endless and results can be thought provoking.

    Emission equipment – By measuring the end result, an exhaust gas analyser can show you if the engine is functioning correctly. The incorrect emissions emitted from the exhaust help indicate a system fault or a mechanical fault with the engine

    Technical service bulletins – Many vehicle manufacturers produce technical service bulletins (TSBs) that are generated by a central point (usually a technical department) from the information that is gathered from their network of dealers. Some of these may be available to the independent sector either through the VM or through a third party – It’s always worth checking if these exist. They may indicate a common fault that has been reported similar to that the technician is facing. Some test equipment suppliers may provide TSBs as part of a diagnostic tool package

    Software updates – Many vehicle systems are controlled by a ECU. Most vehicle manufacturers are constantly updating system software to overcome various faults/  customer concerns. Simply by updating the software can fix the vehicles problem without any other intervention of repairing a possible fault. This is where having a link to a vehicle manufacturer is vital in repairing the vehicle

    Hints & tips – Most technicians will have a link or access to a vehicle repair forum where they can ask various questions on vehicle faults and may get some indication of which system components are likely to cause a vehicle fault

    Functional checks – Vehicle systems are interlinked and typically share information using a vehicle network. The fault may cause another system to function incorrectly, so it is vitally important that the technician carries out a functional check to see if the reported fault has an effect on another system. By carrying out this check the technician again is building the big picture

    Actuator checks – Most systems today are capable of performing actuator tests. The technician can perform various checks to components to check its operation and if the system ECU can control the component, often reducing the time to the diagnosis, by performing this task the technician can identify whether it is the control signal, wiring or component or it is sensor wiring. This function can be used in conjunction with serial data to see how the system reacts as the component functions

    Serial (live) data – The technician can typically review a vehicle system serial data through a scan tool. Having live data readings to refer to can help you review the data captured. Using actuator checks and viewing the serial data can also help the technician to identify a system fault

    Remember to record all the evidence gathered so it can be analysed during the next step in the diagnosis. We can’t remember everything. If the technician needs to contact a technical helpline they will ask for the actual readings obtained recoding the data gathered will help.

    Step 5: Analyse the evidence
    Analysing evidence gathered during the previous steps can take time. The technician needs to build the big picture from all the evidence gathered during the first few steps. You need to analyse the information gathered, and decide on what information is right and wrong.

    This step may rely on experience as well as knowledge on the product. You should take your time – don’t be hurried. Time spent in the thinking stages of the diagnosis can save time later. Putting pressure on the technician can lead to errors being made. It may be necessary to ask the opinion of other technicians. If the evidence is documented it may be easier to analyse or share between others.

    Step 6: Plan the test routine
    After analysing the evidence gathered it’s now time to start to ‘plan’ the best way to approach to the task or tasks in hand.

    The technician should plan their test routine, decide on what test equipment should they use, what results are they expecting, if the result is good or bad  and which component should they test next.

    Document the plan – this enables you to review decisions made at this stage in the next step. The technician may not always get it right as there may be various routes to test systems/components. The test routine may have to be revisited depending on the results gathered during testing. Documenting the test routine will provide a map.  Also, don’t forget to list the stages, as this is something that could be incorporated into an invoicing structure later.

    The technician should indicate on the routine what readings they expect when they carry out the system testing. This can be generated by their own knowledge/skill or the expected readings may come from vehicle information which they have already sourced. If the information is not known at the time the test routine is planned, then the test routine may highlight what information is required and what test equipment is needed. You shouldn’t be afraid to revisit the plan at any time and ask further questions on which direction the tests should take. If the plan is well documented and the technician becomes stuck at any point, they can pause the process and revisit later. Also the information can then be shared with various helplines that support workshop networks.

    Step 7: System testing
    The technician then follows their pre-determined plan, if it is documented they can record the results of the test(s) as they follow the routine.

    Many technicians tend to go a little off-piste when they get frustrated. Having the routine documented can keep the technician on track and focused on the result. If the routine is followed and the fault cannot be found the technician may have to go back to the analysing the evidence or planning the test routine. The technician shouldn’t be scared of going back a few steps, as I said previously analysing the evidence takes practice and can be time consuming, not to be rushed.
        
    Summing up
    Remember to follow the process. It is easy to be led off track by various distractions but don’t try to short circuit the process. Some steps may take longer than first thought to accomplish than others. Some distractions may be outside of your control, and it may be necessary to educate others. Practice, practice, practice. Refine the process to fit in with your business and its practices, the business could align its estimating/cost modelling to the process, being able to charge effectively and keeping the customer informed at each stage of the process.

    Coming up...
    In the next article I will be looking at the next four steps which are; Step 8: Conclusion (the root cause), Step 9: Rectify the fault and Step 10: Recheck the system(s). The last article in this series will indicate the final three steps and how to fit them all together in order to become a great technician and perhaps succeed in Top Technician or Top Garage in 2018.



  • 888... Lucky for some 

    With this month’s focus in Aftermarket on cooling, I thought a look at how technology has affected one of the oldest systems of the internal combustion engine. For illustration, I have chosen the Volkswagen Auto Group’s en888 engine, built in Mexico, Hungary and China hence the 888 insignia; It is their lucky number.

    Its one of Audi’s high-performance variants. Its fitted in my Seat Cupra 2ltr, producing 400bhp with stock mechanicals. So, what are the benefits of advanced cooling systems? Heat derived from combustion, transferred by conduction and convection into cooling and the environment is in effect wasted energy. Controlling and where necessary containing it improves efficiency, not forgetting reductions in emission pollution.

    Efforts
    They have made stringent efforts in the mechanical design of the 888 to achieve savings in efficiency. Reducing engine weight, minimising internal friction, increasing power and torque, current with fuel economy initiatives.

    The cylinder block wall is reduced from 3.5mm to 3.00mm. Internal friction is reduced with smaller main bearing journals, revised timing chain design, incorporating a dual pressure lubricating system. The balance shaft has roller bearings, piston cooling jets further improve thermal stability. The jets have PCM mapped control, while extra oil cooling is provided adjacent the filter housing, close to the activation solenoid and twin oil pressure sensors.

    The engine can theoretically reach Lambda 1 from cold within 20-30 seconds.

    Further technical innovations include reduced oil level, reduced tension force in the auxiliary chain mechanism, down shifting achieved with variable valve lift and twin scroll direct mount turbo design.

    Advances
    You will now appreciate that it is no longer possible to separate mechanical design, power delivery, emissions, and all-round efficiency, treating cooling as an afterthought.

    Take the cylinder block design, which possibly has the biggest advances reserved within the cylinder head and coolant control module (water pump). The exhaust manifold is housed completely within the cylinder head casting. This ensures very effective conductance of heat. The emphasis is now on increase, maintain, reduce, thanks to an advanced dual valve PCM controlled coolant control module. The module is mounted at the rear of the engine block, belt-driven with a cooling fan to keep the belt cool.
    By manipulating the two rotary valves, flow and temperature can be effectively controlled within very carefully controlled limits. The rotary valves are manipulated by a PWM 1000hz motor with SENT position feedback (single edge nibble transmission), a method used by the latest air mass meters.

    Heat transfer into and from the turbo is much more efficient due partly to the direct mount and integrated cooling galleries surrounding the exhaust tracts.

    The piston to wall clearance has been increased, with a special coating on the piston thrust side complimenting a direct gudgeon pin to rod contact, the DLC coating removes the need for a bearing bush.

    The cylinder head porting incorporates ignition sequence separation, thus ensuring preceding exhaust pulses do not impede the energy from the current. This in combination with advanced turbine design further improves torque range and downshifting. Cooling control priority is applied to the occupants, then the transmission, further reducing frictional losses.

    Complexity
    Although not directly related to the cooling system, a dual injection system is fitted with its main function being emission reduction. Cold start is provided with three direct injection events, followed by port injection warm up. These systems do not run in tandem. Two thirds of the load range is controlled by port injection, with full load above 4,000 rpm delivered by induction stroke direct fuel delivery.

    From a practical point of view, previous low-tech tasks like replacing coolant components and bleeding now requires electronic support through the serial interface. Using the correct antifreeze is now essential if premature corrosion is to be avoided. As a warning, capillary coolant invasion within wiring looms is well known in some French and GM vehicles, as some of you will be aware.
    It is also worth mentioning that Volkswagen has modified the software controlling cooling in some of their diesel vehicles as part of the emission recall programme.

    Predictably due to their complexity, I can foresee cooling systems being neglected during routine servicing , so expect to see faults as these systems age in the pre-owned market.


  • New Klarius catalogue offers 10,000+ parts 

    Klarius has launched a new web-based parts directory. The WebCat 2018 provides complete online access to 10,000+ parts including exhaust components, catalytic converters, DPFs and fitting kits. Each part is not only searchable by the Klarius part number but also by competitor reference and OE reference. Each result displays a technical drawing of the full emission system, with all components and kits clearly labelled for easy identification. New parts data will appear on the WebCat first, before being added to other commercial cataloguing systems such as TecDoc and MAM. With the Klarius R&D department adding new-to-range parts on a daily basis, updates will be frequent.
    webcat.klarius.eu/catalogue

  • Glowing, going, gone! 

    I decided to share this case study for my first article because what I expected to be a simple job turned into something a little more complex and gave me an opportunity to study a and learn about a system that until now I’d probably taken for granted.

    We were presented with a 2010 Skoda Fabia 1.6 TDi by a car dealer who had recently taken it in part exchange. The engine management was light illuminated, however with no other symptoms. The previous owner told the dealer that the MIL had been on for around a year and her local garage had failed to repair it. It had also recently been recalled for the ‘Dieselgate’ VAG emission software update. The dealer told the customer there were DTCs stored for the glow plugs and that they needed replacing to which she declined as she was sure they had previously been replaced. We already had a reasonable amount of vehicle history to start with, and were ready to take a look.

    Voltage and current
    A code read revealed DTCs for all four glow plugs being open circuit and a glow plug module communication fault. A quick inspection of the engine revealed that the glow plugs were not that old and also there was a new glow plug module fitted, plus an old one found in the boot.

    While checking the resistance of the glow plugs may tell us something, measuring the voltage and current with an amps clamp paints a much clearer picture. The oscilloscope was connected and the ignition was cycled. The screen capture revealed a healthy 12 volts for around 10 seconds then pulsed at random, however there was zero amps flowing (on all glow plugs). It was clear the plugs had gone open circuit for some reason so they were removed for inspection. It was then we noticed that the heater plugs fitted were rated at 4.4 volts, so now we know why they burnt out! Could they be the wrong glow plugs? Could it be the wrong control module? We checked and found the part numbers were correct.

    At this point it was crucial that we understood exactly how the system is wired and how it should operate. By studying a wiring diagram we were able to plan how we were going to test the system (see image 1). Starting with the power supplies and ground, it is always best to test a circuit in its normal environment which means we really need the current load of working heater plugs. If we were to fit new heater plugs at this point there was a high risk of them being damaged which is expensive so we substituted four headlamp bulbs instead. The fuse rating for the circuit was 50A so with a quick bit of maths we calculated the current required for four bulbs was safe. The main live feed, ground and ignition switched live were all good so we moved on to the two communication wires that link directly to the PCM.  

    If the PCM can log individual codes for each glow plug then we know that it must have a two-way communication system. Scoping both wires with the module connected and disconnected showed us that there was clearly a command signal from the PCM and although it was random and rather messy (see image 2), the glow module responded directly by activating the glow plugs at the same rhythm.

    The second wire had totally different digital signal which had to be the feedback to the PCM. The noise and irregularity of the command signal was clearly an issue so we checked the wiring back to the PCM and with the aid of the good old-fashioned wriggle test the fault was identified as a poor connection in the PCM harness connector. The connection was cleaned and the system retested which revealed a much healthier scope pattern and the communication DTC was cleared (see image 3).

    Reliable repair
    At this point we could have fitted new glow plugs but to save unnecessary expense we wanted to make sure it was a reliable repair so we decided to monitor the system with the faulty glow plugs still installed and the leads connected to the bulbs. We started by monitoring all four glow plug voltages on the oscilloscope. Using the scan tool to activate the glow plugs showed us that the 4.4 volts is achieved by pulse width modulation at a duty cycle of around 13% with a frequency of around three times per second. What was more interesting was that all four plugs were individually triggered in a sequence (see image 4) so there is never more than one glow plug energised at any one time. The logic behind this is that it makes a substantial reduction in power consumption.

    Our next test was to observe the control strategy of the PCM from a cold start and warm-up phase. The objective here was to ensure that there was no software related issues. From the point of key on there is a 1.5 second supply phase to heat the plug as fast as possible then temperature is maintained by the 13% duty control.

    Decade box
    Of course, after a period of time, once the engine starts to warm up the system turns off and the communication wires go quiet. If you want to test it more than once then you’d have to wait for the engine to cool so to save time we connected a decade box in place of the engine coolant temperature sensor and by observing the coolant temperature in serial data on the scan tool we were able to select a variety of resistances that would represent low temperatures and fool the PCM into commanding glow plug activation.

    The decade box has proved to be an extremely useful tool really is a must in any diagnostic technician’s tool box. It is great for substituting in place of certain sensors and components to check the integrity of a circuit or to observe an ECU responding to a variation in signal (resistance).

    The final test was an observation of voltage over current on one glow plug. The other interesting thing we noticed was the simplicity of the digital feedback signal. By unplugging each glow in turn you could see the pattern in the signal change and when all were connected and working it was a regular pattern.

    Summing up
    Clearly more time was spent on this job than necessary and the labour charge remained fair. In a busy workshop it is hard to find spare time for these situations but my point is that sometimes sacrificing a lunch hour or staying behind for half an hour gives an opportunity to learn so much which can only aid you in speeding up diagnostic time and process on future jobs.

    Winning the Top Technician 2017 competition was unexpected. It has not only introduced me to some very inspiring, like-minded people, but has also taught me you can never have too much training, whether it’s self-training like in this instance or on a professional training course. There are some fantastic training companies offering a variety of courses available now. Also, some of the best and most respected all regularly write for Aftermarket!  





Most read content


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Facebook


©DFA Media 1999-2018