Highs and Lows

Karl shares his insights on the conundrum of EGR. A riddle, wrapped inside an enigma, recirculating exhaust gas through the system

Published:  30 July, 2018

When faced with diagnosing a fault, in order for us to be able to test the system it is crucial we understand the system’s layout, components and function. We recently faced a fault in a system we had little experience on, so it was an ideal opportunity for a bit of studying.

Technical information is readily available from many sources, be it manufacturer or generic information, and does not take too long to find. While Google isn’t really a substitute for diagnostics, in situations like this it can be very useful for generic information. The fault on this vehicle turned out to be something so trivial I won’t bore you with it. What I would like to share is the valuable information I picked up along the way.

Main purpose
Exhaust gas recirculation (EGR) is nothing new, it’s been used on petrol and diesel engines for many years and while layout and control has varied in design the principle has remained the same. It is important to understand that manufacturers use different methods and configureuration, and for this article I’ve studied several and have tried to demonstrate a generic system.

The main purpose of EGR is to reduce the level of harmful Nitrogen Oxide (NOx) gases emitted from the vehicle’s exhaust. NOx is present in exhaust emissions due to high combustion temperatures and pressures. Under light load/cruising conditions the EGR system directs a proportion of the exhaust gas back into the engine’s air intake. This reduces the oxygen levels which in turn reduces combustion temperature resulting in a lower NOx emission. When power is required from the engine the EGR system closes to insure a more efficient combustion (see figure 1).

EGR on/off
This is the conventional system in its closed (off) position.  During operation exhaust gases are taken from the exhaust manifold (pre-turbo), passed through a cooler (10) up to the EGR Valve (6). The cooler is a heat exchanger that not only uses the engine coolant to cool the gases to increase the mass but utilises the heat to warm up the coolant faster which helps the interior heater warm-up faster. The EGR Valve (6) can be either electrical of vacuum operated. The  powertrain control module (PCM) commands the EGR valve to open by a specified amount dependent on engine conditions (see figure 2).

Some EGR valves have a position sensor that provides feedback to the PCM to ensure the correct position has been achieved. In a system where the EGR valve is not equipped with a position sensor, the PCM monitors the Mass Airflow signal in order to regulate EGR flow. This is achievable due to the fact that as the EGR valve is commanded open and gases start to flow, the air flowing in to the Mass Airflow Sensor will decrease. The calculation is made using tables of data (mapping) within the PCM’s software. Understanding this is crucial when diagnosing running faults as a fault in the Mass Airflow can easily affect the EGR system and vice versa.

Understanding and diagnosing airflow and EGR faults I find can be easier if you look at it pressure differential. If air is flowing through a tube with a restriction in it, the air pressure after the restriction will always be lower than the pressure before the restriction. The difference in pressure will vary depending on the mass or pressure of the air and the size of the restriction.

Air intake/throttle flap
The air intake/throttle flap (see figure 3) generally defaults to the fully open position while the EGR valve defaults to the closed position. The purpose of the flap is to reduce the pressure on the engine side. As the intake flap starts to restrict the airflow, the pressure decreases to a pressure lower than that of the EGR pressure and the EGR gases start to flow into the engine’s air intake. If the exhaust gas pressure was slightly lower than the air pressure entering the engine then the gases would flow in the wrong direction.
    When in good working order this system serves its purpose. However, due to the fact that there is particulate matter in the exhaust gases, the system and components will slowly become blocked, causing reduced flow and valves starting to jam or not seal correctly. The air intake system often contains oil residue from the engines breathing system and slight oil loss from the turbo itself. When this oil is mixed with the particulates in the EGR gases it makes a very sticky gunk that starts to block the inlet manifold and intake ports.

When the engine is under load and turbo boost pressure is required, the EGR valve needs to close and seal. If an EGR valve isn’t sealing correctly when closed then boost pressure will be lost into the exhaust system. The lower boost pressure and reduced oxygen level affects the combustion which in turn causes more particulate matter which only adds to the issue. If the EGR valve is stuck wide open then in most cases the engine will barely run.

High pressure system    
Euro 6 was introduced in September 2014 which demanded much tighter emissions than previous which required an advance in emission control technology. While the precise control of the fuel side of the engine management system has gained precision with higher fuel pressure and multiple injections within the cycle, the air intake, exhaust and emission control systems have too. Most manufactures use a high and a low pressure EGR system.  Prior to this most EGR systems were relatively simple and fell under the ‘High Pressure EGR’ title (see figure 4 and figure 5).

The high pressure system is similar in layout to previous systems but serves a slightly different purpose. The system is only used during the warm-up phase of the engine from cold start. There is a pre-turbo passage from the manifold directly to the high pressure EGR valve (6). As the system is only used in the warm-up phase there is no need for a cooler. In this particular system there is a distribution channel that directs the gases equally into each inlet port. The purpose of this system is to raise the intake air temperature in order to improve combustion and reduce the warm-up time for the catalytic convertor/NOx storage catalyst (7) allowing them to function sooner. Once at operating temperature the system is pretty much redundant.

Low pressure system
The low pressure system (is active under most engine operating conditions and its purpose replaces that of the older systems- to reduce NOx gases (see figure 6). A proportion of the exhaust gas is collected after the Diesel Particulate Filter (8) and passes through a Wire Mesh Filter (9), through the EGR Cooler (10), up to the Low Pressure EGR Valve (11). The EGR valve then controls the flow through a channel up to the intake side of the turbocharger. The wire mesh filter ensures there is no particulate matter entering the system and also in the event of the particulate filter substrate breaking up, it also protects the rest of the system including the turbocharger, air intake and engine internals from damage. The cooler reduces the gas temperature which in turn increases the mass allowing a higher volume of exhaust gas to be recirculated. Due to the exhaust pressure after the particulate filter being quite low and also the air intake pressure before the turbo charger also being low there is and Exhaust Flap (12) fitted. By closing this slightly the exhaust pressure increases which causes the gases to flow back towards the turbocharger.

Key benefits
These systems usually have between three and four  exhaust gas temperature sensors each placed at key points of the exhaust system and two pressure differential sensors. The first is measuring pressure before and after the particulate filter (to calculate soot loading) and second between the DPF outlet and the point after the EGR valve, before the turbo. Coupling these six signals with the Mass Airflow sensor, the positions of both EGR valves and the intake flap, the turbo variable-vane position and the intake pressure (MAP), using the mapping within the PCM’s software means it can also make all calculations necessary. This provides an extremely high intake pressure and exhaust after treatment control.

The key benefits of this system are that the exhaust gases are free of any particulate matter which keeps the entire system much cleaner and therefore reliable. The gases are also cooler meaning a greater mass can be used in a more effective way. Finally the gases re-enter the system before the turbocharger, allowing for the increase in boost pressures at lower engine load and RPM.

Does this make diagnosis harder than before? Not if you take the time to study the purpose of each component and how it works. I’ll openly admit it wasn’t that long ago that I would have taken one look at this system and sent it on its way! Nobody likes being beaten by a job but neither should we have to waste too many hours trying to guess what’s wrong with it, worse still start throwing parts at it. It took me half an hour to locate this info, an hour studying it and a further hour planning what tests I was going to conduct and what results I was expecting to see. What was wrong with it in the end? A faulty sensor confirmed with no more than a voltmeter! After replacing the sensor I wanted to confirm the repair and monitor the function of the components using serial data. Something I highly recommend doing is picking five lines of serial data on every car you work on that requires an extended road test and monitoring them to see how they behave and what effect driving style (engine load) has on them. I guarantee after 10 cars you’ll know what to expect and be far more confident in diagnosing related faults. It works for me!

Related Articles


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Calendar

Click here to submit an event

Facebook


©DFA Media 1999-2019