Engine management: Past and future

Dealing with engine management systems has come a long way since the 1970s. Frank looks at where things were and where they are going

Published:  06 June, 2019

I have long accepted that nothing stands still for long in this industry. Just when you think you have a grasp of the subject something is sure to upset it. Nothing illustrates this more than powertrain diagnostics. Initially this was called fuel injection, and later became engine management. Now I’m afraid it’s even more complex.
I find myself fortunate to have been there at the beginning; Bosch l Jetronic, a 25 pin ECU with if I recall correctly, only 13 pins occupied. No serial diagnostics, no specific tools. So why was I fortunate? Consider my reflection on diagnostics back in the late 1970s and see if they are still applicable today.

Firstly, you had to understand what the system had to achieve, what components it had at its disposal, what role they played and how they interacted within that system.

The next challenge was measurement values; what to expect under a variety of conditions, and what equipment was required to access this information. This all seems so straightforward now, but in those days it was a little like Columbus sailing across the ocean. He knew it was wet, he needed a boat, he knew which way west was, despite this being blasphemy in the eyes of the Pope, and so set off without a clue as to what was out there.

Hardly a logical diagnostic process, however I was writing the rule book and did understand the meaning of the words test don’t guess. So, what’s changed that undermines these basic principles?

Acessibility
With even the most basic of vehicles now relying on a level of technology that makes accessibility almost impossible, OE manufacturers totally forbid any intrusion within the wiring loom and I am sure this explains the why design and manufacture precludes access as a high priority. However, we are brave, and have the Starship Enterprise at our disposal for our journey of discovery.
The problem is one of integration. Systems don’t function in isolation any more, and Columbus now has to map the Americas and Australia at the same time. In order to conduct an accurate assessment of a function it must be in its natural environment and be observed when functioning normally.

Complexity
This is not restricted to a physical state. It also includes software, algorithms, and predictive response, correction or adaptive action. Systems now change their mode of operation based on environmental influences, affected by a very wide range of changing influences. Cylinder select or dynamic stability comes to mind. The driver selects an option from a long list of choices, engine, transmission, and chassis. I used to say that for a function to occur it must have a command followed by response. In today’s world,  the command may be a software decision followed by a constantly changing response, stratified and homogenous fuelling, infinitely changing camshaft timing and variable valve lift to name a few.

Test options
Manufacturers are driven by non-intrusive process dictated by guided diagnostics. Pre-determined test plans more often or not end with a pass or fail result, foregoing any data reveal.  Is this due to a control of process and cost, or a mistrust in their techs? Actual evaluation of circuits, voltage, current or complex profile is getting ever more difficult. Attachment of gauges in order to measure pressure and flow is often restricted by sealed transit hoses or internal ducting within castings. Serial data has become so much, more powerful and trustworthy, however it does not and will not replace the functions available from an oscilloscope. Specialist mechanical tools and assembly techniques prohibit casual examination, due to cost or the ever more common single fitment parts.

Data extraction
This may lie in a multitude of directions; Physical extraction, camshaft timing, fuel quantity per stroke via the serial port or fuel pressure rise time via the scope. We are forced to monitor not just a physical value, but not how the PCM is adjusting or adapting a value. How do we know the parameters of operation when VMs are removing more and more data in favour of the pass-fail flags from a software automated test profile?

SENT
Rieve gauche, no not a walk along the Left Bank, but a completely new protocol for data and diagnostic transmission. SENT has been developed specifically for automotive applications, rather than being a black-market hooky copy from other engineering developments. SENT stands for single edge nibble transmission, and is a uni-directional out-only data line to the PCM. SENT is essentially a serial interface, used predominantly with throttle position, air mass and temperatures. The basic unit of time is the tick, with a minimum data unit nibble. 0Data transmission speeds over fast or slow channels, where bitrate can also vary: 1xtick= 3us. In essence it is very similar to a single channel can transmission, where the function includes synchronisation, calibration, CRC and checksum.
How am I to challenge the authenticity of data? For example, sensor error may come from power or ground discrepancies, range error, environment influences, calibration error or simply a genuine condition fault. Its design is of course intended to provide an autonomous diagnostic platform via the serial port, excluding any assessment by the techs.

Full circle
What does this mean for the industry? I suspect it will go full circle back to the 1970s, when part swapping was the norm for Christopher Columbus frauds.

Related Articles

  • 888... Lucky for some 

    With this month’s focus in Aftermarket on cooling, I thought a look at how technology has affected one of the oldest systems of the internal combustion engine. For illustration, I have chosen the Volkswagen Auto Group’s en888 engine, built in Mexico, Hungary and China hence the 888 insignia; It is their lucky number.

    Its one of Audi’s high-performance variants. Its fitted in my Seat Cupra 2ltr, producing 400bhp with stock mechanicals. So, what are the benefits of advanced cooling systems? Heat derived from combustion, transferred by conduction and convection into cooling and the environment is in effect wasted energy. Controlling and where necessary containing it improves efficiency, not forgetting reductions in emission pollution.

    Efforts
    They have made stringent efforts in the mechanical design of the 888 to achieve savings in efficiency. Reducing engine weight, minimising internal friction, increasing power and torque, current with fuel economy initiatives.

    The cylinder block wall is reduced from 3.5mm to 3.00mm. Internal friction is reduced with smaller main bearing journals, revised timing chain design, incorporating a dual pressure lubricating system. The balance shaft has roller bearings, piston cooling jets further improve thermal stability. The jets have PCM mapped control, while extra oil cooling is provided adjacent the filter housing, close to the activation solenoid and twin oil pressure sensors.

    The engine can theoretically reach Lambda 1 from cold within 20-30 seconds.

    Further technical innovations include reduced oil level, reduced tension force in the auxiliary chain mechanism, down shifting achieved with variable valve lift and twin scroll direct mount turbo design.

    Advances
    You will now appreciate that it is no longer possible to separate mechanical design, power delivery, emissions, and all-round efficiency, treating cooling as an afterthought.

    Take the cylinder block design, which possibly has the biggest advances reserved within the cylinder head and coolant control module (water pump). The exhaust manifold is housed completely within the cylinder head casting. This ensures very effective conductance of heat. The emphasis is now on increase, maintain, reduce, thanks to an advanced dual valve PCM controlled coolant control module. The module is mounted at the rear of the engine block, belt-driven with a cooling fan to keep the belt cool.
    By manipulating the two rotary valves, flow and temperature can be effectively controlled within very carefully controlled limits. The rotary valves are manipulated by a PWM 1000hz motor with SENT position feedback (single edge nibble transmission), a method used by the latest air mass meters.

    Heat transfer into and from the turbo is much more efficient due partly to the direct mount and integrated cooling galleries surrounding the exhaust tracts.

    The piston to wall clearance has been increased, with a special coating on the piston thrust side complimenting a direct gudgeon pin to rod contact, the DLC coating removes the need for a bearing bush.

    The cylinder head porting incorporates ignition sequence separation, thus ensuring preceding exhaust pulses do not impede the energy from the current. This in combination with advanced turbine design further improves torque range and downshifting. Cooling control priority is applied to the occupants, then the transmission, further reducing frictional losses.

    Complexity
    Although not directly related to the cooling system, a dual injection system is fitted with its main function being emission reduction. Cold start is provided with three direct injection events, followed by port injection warm up. These systems do not run in tandem. Two thirds of the load range is controlled by port injection, with full load above 4,000 rpm delivered by induction stroke direct fuel delivery.

    From a practical point of view, previous low-tech tasks like replacing coolant components and bleeding now requires electronic support through the serial interface. Using the correct antifreeze is now essential if premature corrosion is to be avoided. As a warning, capillary coolant invasion within wiring looms is well known in some French and GM vehicles, as some of you will be aware.
    It is also worth mentioning that Volkswagen has modified the software controlling cooling in some of their diesel vehicles as part of the emission recall programme.

    Predictably due to their complexity, I can foresee cooling systems being neglected during routine servicing , so expect to see faults as these systems age in the pre-owned market.


  • JLM Academy launches with DPF Doctor founder Darren Darling at the helm 

    The JLM Academy officially opened its doors on Saturday (20 July). The brainchild of Darren Darling, founder of The DPF Doctor Network, the new Academy is fielding a top-drawer roster of industry trainers, including Darren and Andy Savva, a.k.a The Garage Inspector.

  • Draper Expert Diagnostic and Electronic Touch Screen Service Tablet 

    The Draper Expert automotive range now includes a new wireless Diagnostic Tablet. It covers 48 vehicle manufacturers, including American, Asian and European vehicles. The device offers complete OBDII diagnostic functions, and comes with 12 months of free updates. The tablet will quickly read and clear diagnostic trouble codes, making it suitable for MOT tasks as well as servicing requirements as well as advanced electronic maintenance and diagnostics. Technicians can record selectable multi-channel, real-time diagnostics information for subsequent analysis. It can also be customised to print detailed diagnostics reports for customers featuring a company name, logo and contact information. It is also a fully functioning Lenovo Android tablet, so technicians can take photos and record videos with sound. The tablet comes supplied with a carry case, ID Vehicle to VCI adaptors, USB power cable, 230V to USB plug and Wireless Bluetooth DBS connector.
    www.drapertools.com

  • New Year – Fresh perspective 

    Into 2018, John looks at the steps you need to take to make your workshop more efficient, while obeying the Laws of Diagnostics

  • Reasoning and Diagnostics Pt 1  

    Diagnostics is all about decisions. And what is a decision? It is a conclusion or resolution reached after consideration. Therefore, efficient and effective diagnostics is about drawing the right conclusions at the right time. How do we do that? Amongst other things, by making sure our logical and critical thinking skills are up to scratch. This series of articles aims to help us with that by looking at the principles of human reasoning.

Most read content


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Calendar

Click here to submit an event

Facebook


©DFA Media 1999-2019